Information rate and spike-timing precision of proprioceptive afferents.

نویسندگان

  • Ralph A DiCaprio
  • Cyrus P Billimoria
  • Björn Ch Ludwar
چکیده

Proprioception in the first two joints of crustacean limbs is mediated by chordotonal organs that utilize spike-mediated information coding and transmission and by nonspiking proprioceptive afferents that use graded transmission at information rates in excess of 2,500 bits/s. Chordotonal organs operate in parallel with the graded receptors, but the information rates of the spiking chordotonal afferents have not been previously determined. Lower-bound estimates of chordotonal afferent information rates were calculated using stimulus reconstruction, which assumes linear encoding of the stimulus. The information rate was also directly estimated from the spike train entropy, which makes no a priori assumptions with respect to the coding scheme used by the system. Lower-bound information rate estimates ranged from 43 to 69 bits/s, whereas the direct estimates ranged from 24 to 278 bits/s. Comparison of both estimates derived from the same data set indicates that a linear decoder could recover an average of 59% of the information from the spike train. Afferent spike timing was found to be extremely precise, with spikes evoked with an average timing jitter of 0.55 ms. Information rate was correlated with the mean jitter and the noise entropy of the spike train could be predicted from the mean firing rate and mean jitter. Direct stimulation of single afferents by current injection into the soma revealed that the average timing jitter was <0.1 ms, indicating that intrinsic membrane properties, spike generation, and mechanotransduction mechanisms are the major sources of timing jitter in this system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microsecond-scale timing precision in rodent trigeminal primary afferents.

Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological samplin...

متن کامل

Neuromodulation of spike-timing precision in sensory neurons.

The neuropeptide allatostatin decreases the spike rate in response to time-varying stretches of two different crustacean mechanoreceptors, the gastropyloric receptor 2 in the crab Cancer borealis and the coxobasal chordotonal organ (CBCTO) in the crab Carcinus maenas. In each system, the decrease in firing rate is accompanied by an increase in the timing precision of spikes triggered by discret...

متن کامل

Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys

Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cerv...

متن کامل

Information about complex fingertip parameters in individual human tactile afferent neurons.

Although information in tactile afferent neurons represented by firing rates has been studied extensively over nearly a century, recent studies suggest that precise spike timing might be more important than firing rates. Here, we used information theory to compare the information content in the discharges of 92 tactile afferents distributed over the entire terminal segment of the fingertip when...

متن کامل

Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues.

Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 3  شماره 

صفحات  -

تاریخ انتشار 2007